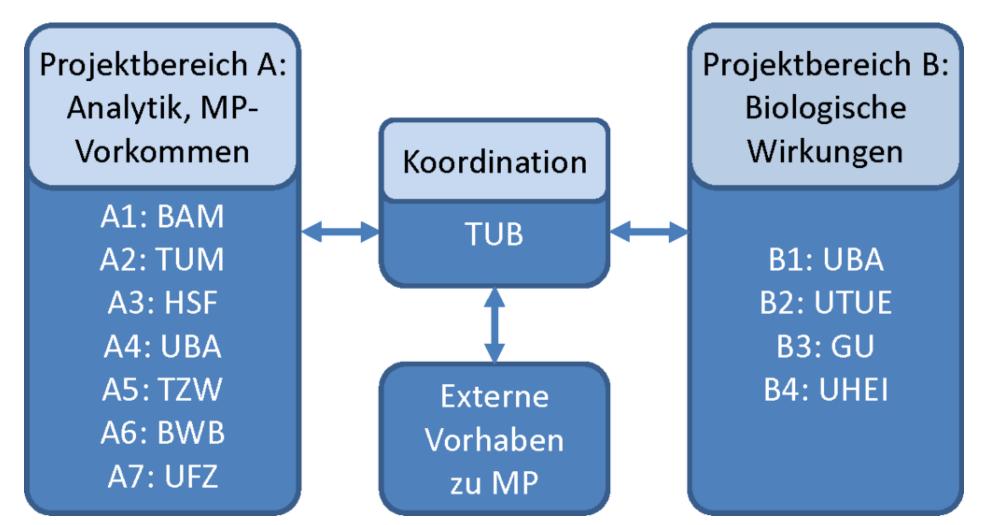


Mikroplastik im Wasserkreislauf – Probenahme, Probenbehandlung, Analytik, Vorkommen, Entfernung und Bewertung



Ziele von MiWa

- Erarbeitung einer standardisierbaren Probenahme für Wässer und Sedimente und einer geeigneten Probenaufarbeitung
- Testung von unterschiedlichen analytischen Methoden zum Nachweis der Art, der Partikelgröße und der Menge an MP in Umweltproben
- Vertiefte Kenntnisse über die Interaktion von MP mit Biota und Wirkungen auf das aquatische Ökosystems und den Menschen
- Förderung durch das BMBF seit März 2016

Projektstruktur

Partner

K: TUB: Technische Universität Berlin, M. Jekel, A. S. Ruhl

A1: BAM: Bundesanstalt für Materialforschung und –prüfung, U. Braun

A2: TUM: Technische Universität München, N. Ivleva

A3: HSF: Hochschule Fresenius, Idstein, T. Knepper

A4: UBA: Abwassertechnikforschung, C.G. Bannick

A5: TZW: DVGW-Technologiezentrum Wasser, Karlsruhe, F. Storck

A6: BWB: Berliner Wasserbetriebe, R. Gnirß

A7: UFZ: Helmholtz Zentrum für Umweltforschung, Leipzig, T. Reemtsma

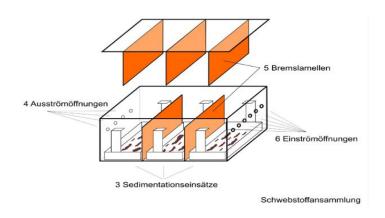
B1: UBA: Toxikologie des Trink- und Badebeckenwassers, T. Grummt

B2: UTUE: Universität Tübingen, R. Triebskorn

B3: GU: Goethe-Universität Frankfurt, J. Oehlmann

B4: UHEI: Universität Heidelberg, T. Braunbeck

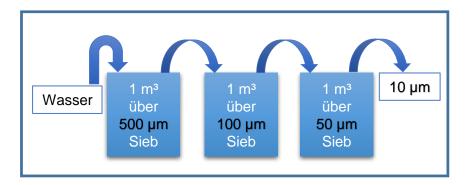
Probenahme und -aufbereitung



Entwicklung von Probenahmetechniken

Kontinuierliche Probenahme

Schwebstofffalle



- Sedimentation von Schwebstoffen
- Dauerhafte Beprobung (mehrere Wochen) im Durchstrom möglich (geringem Aufwand)
- → Größenklassifikation, Abscheiderate und Reproduzierbarkeit

Punktuelle Probenahme

Fraktionierte Filtration

- Größenklassifizierung von MP durch Sieblinien vorgegeben
- Optimierung auf Anforderungen der TED GC MS
- → Wiederfindung, Partikelverteilung innerhalb der Sieblinien und Reproduzierbarkeit

Workflow: Probenahme, -behandlung und Analytik

Probenahme

Filtration/Anreicherung von 1 – 20 m³ → Filterkaskade (100, 20 und 5 µm)

Extraktion der Filterkerzen

Aufkonzentration der angereicherten Partikel in 1 – 2 L Extraktvolumen

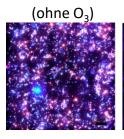
Probenaufreinigung

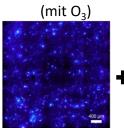
- Bleichung der Organik mit Ozon
- Bei Bedarf enzymatische Aufreinigung
- Zentrifugation und Dichtetrennung

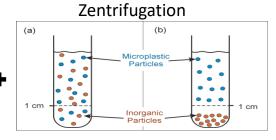
Separation der Partikel

- Vakuumfiltration über PTFE- Filter
- Teilprobe von 15-40 ml

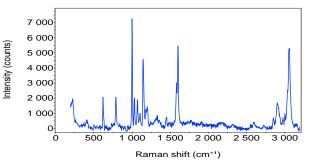
Analyse und Hochrechnung


- Raman-Mikrospektroskopie (N/m³)
- Teilfläche (0,3 21 % Filterfläche)





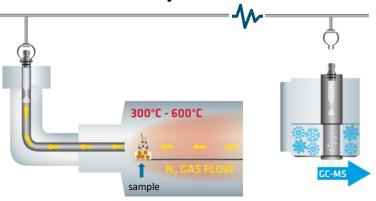
Ultraschallextraktion



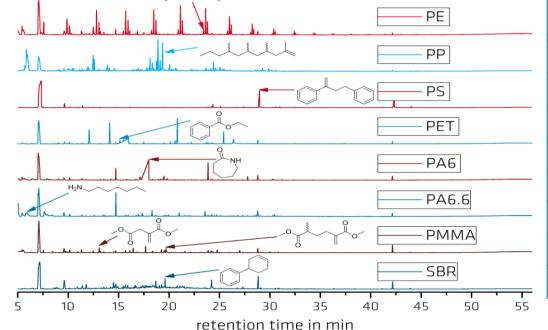
- kein störendes Ramansignal
- möglichst ebene Filteroberfläche

Analytik

Technische Universität München



TED-GC-MS ThermoExtraktion & Desorption-GC-MS



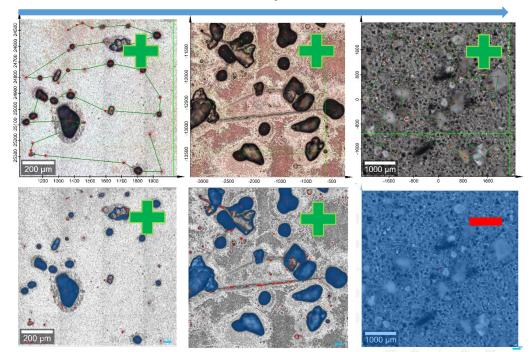
- Homogene Probe erforderlich
- > Vollautomatisierbar
- Sichere Identifikation durch Zersetzungsprodukte
- > Quantifizierung des Gehaltes
- > 50 mg Probe
- > Messzeit 2h 20min
- > SD bis 4%

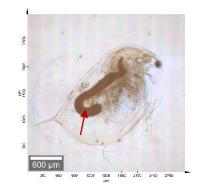
Poly- mer	LOD in µg		
PE	1,6		
PP	0,44		
PS	0,20		
PET	0,68		
PA6	0,52		
PA6.6	2,8		
PMMA	0,20		
SBR	0,27		
Folie 9			

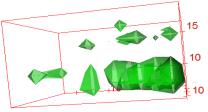
Mikroplastik Identifizierung & Quantifizierung mittels Raman-

mikrospektroskopie

Zunehmende Komplexität der Probe

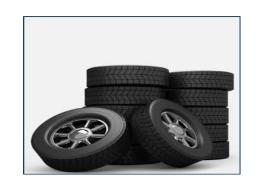

Technische Universität München

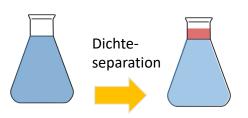

Analyse von Filtern

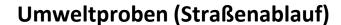

Semiautomatisiert

Automatisiert

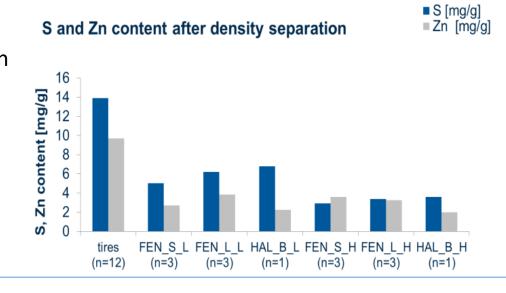
Analyse von aquatischen Organismen




3D-Imaging

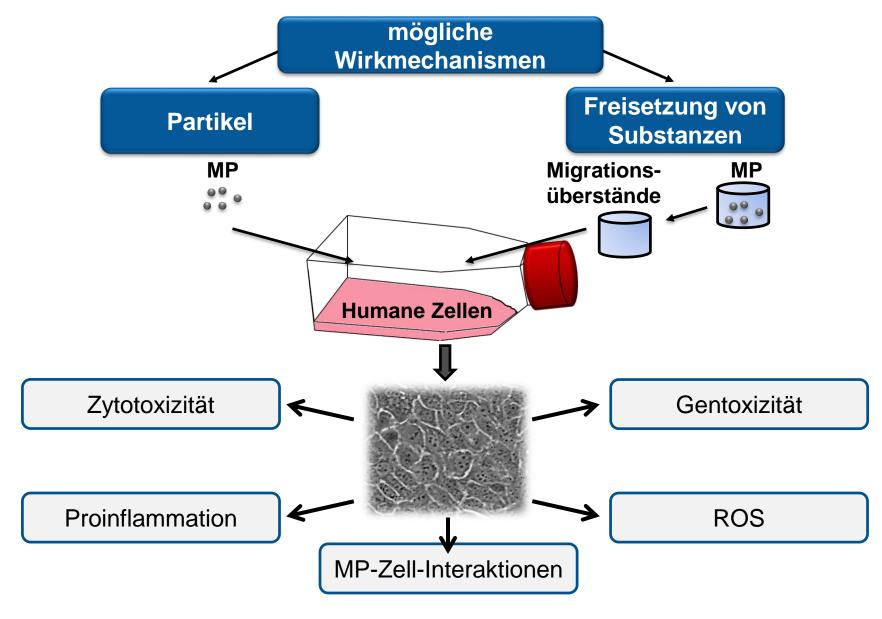

Unveröffentlichte Ergebnisse

Elementgehalte als Fingerprint für Reifenabrieb


	S [mg/kg]	Zn [mg/kg]	S : Zn
Average (n=12)	13900	9700	1.5
Std.dev.	1900	2300	0.3

- **1.)** Separation und Aufkonzentrierung von Reifenpartikeln von der Matrix mittels Dichteseparation
- **2.)** Elementgehalte in der leichten und schweren Fraktion auf S und Zn

Wirkungen



Toxikologische und ökotoxikologische Wirktests in MiWa

- Relevanz für Mensch und Umwelt
- > Effekte vom Molekül bis zur Nahrungskette
- Aufnahme und Effekte in Zellen und Organismen
- Kurz- und Langzeiteffekte (wenige Sekunden bis 6 Monate)
- Direkte und indirekte Wirkungen
- Interaktion von Mikroplastik mit anderen Stoffen

Toxikologische Wirktests (UBA Bad Elster)



Toxikologische Wirktests

Testsystem	Getestete Partikel	Wirkendpunkt	Effekt
			ja/nein
Humane Keratinozyten	Fluoreszierende PS- Partikel (PS-FluoRot-	Plastikaufnahme in Zellen	Ja
Refatifiozyteri	Fi207-1: 0,250 ± 0,06 μm)		
	PS < 5 μm; 2300	Zytotoxizität	Nein
	Partikel/ml; 48 h		
	PS < 5 μm; 1000 bis 9725	Apoptose (Detektion von	Nein
	Partikel/ml; 24 h	Mono- und	
		Oligonucleosomen)	
	PS < 5 μm; 2300	Gentoxizität	Nein
	Partikel/ml; 48 h		
Humane	Fluoreszierende PS-	Mikroplastik-Zell-	Ja
Monozyten	Partikel (PS-FluoRot-	Interaktionen	
	Fi267: 0,980 ± 0,04 μm)		

Bundesamt

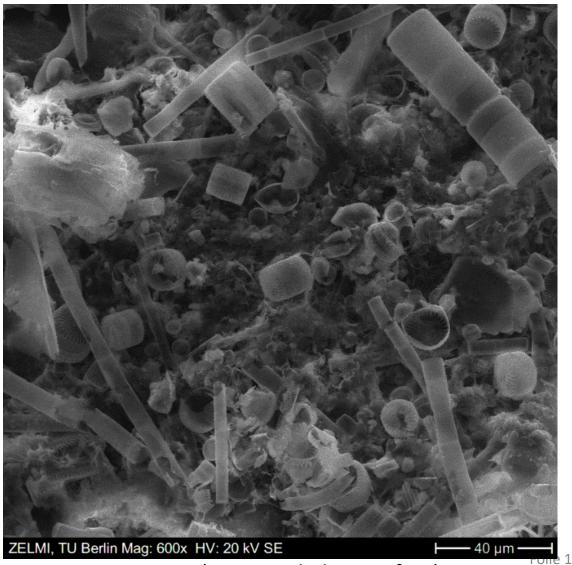
rot: PS-FluoRot-Fi207-1: 0,250 ±

0,06 μm

blau: Zellkern (Hoechst 33342;

abs/em = 361/486 nm)

Arbeitsgruppe	Organismus	Wirkendpunkt	Effekt ja/nein
Uni Tübingen	Bachforelle Ei / Embryo/ Larve	Embryotoxizität, oxidativer Stress	nein
	Bachforelle juvenil	Oxidativer Stress, Proteotoxizität, Neurotoxizität, Histopathologie	Noch ausstehend
	Zebrabärbling Ei / Embryo	Embryotoxizität, Verhalten, Oxidativer Stress	Effekt PMMA +Mischung: Nein Effekt durch Thiacloprid: Ja
	Paradiesschnecke Ei/Embryo	Embryotoxizität	nein
	Paradiesschnecke adult	Oxidativer Stress, Proteotoxizität; Neurotoxizität; Histopathologie	nein
Uni Heidelberg	Zebrabärbling (Embryo)	Embryotoxizität, Neurotoxizität (AChE), Teratogenität, Hepatotoxizität (EROD, CYP1A Induktion), Reproduktionsfähigkeit (Vitellogenin-Induktion)	PMMA +BkF: Nein Effekt durch EE2/BkF/ Cypermethrin: Ja Kombination MP + EE2/Cypermethrin: ausstehend
	Zebrabärbling (juvenil/adult) = Nahrungsnetzversuch	Neurotoxizität (AChE), Reproduktionsfähigkeit (Vitellogenin- Induktion), Hepatotoxizität (EROD, CYP1A Induktion), Verhalten, Histopathologie, Immunhistologie	ausstehend
	Salinenkrebs (<i>Artemia spec</i> .)	Aufnahmerate von MP, Verteilung von BkF in <i>Artemia</i> (opt. Detektion mittels Fluoreszenz)	MP=protektiv, da Aufnahmerate mit MP verlangsamt!
Uni Frankfurt	Wasserfloh (adulte, juvenile, neonate)	Gewebetransfer	nein
	Wasserfloh (adult)	Phenoloxidase-Aktivität	nein
	Wasserfloh (Populationsebene)	Populationswachstum, Größenzusammensetzung- und -entwicklung, Dauereierproduktion	nein Folie 16



Elbe-Proben

100 μm (85 mg Beladung auf GF)

Workshop am 16. 10. 2017, TU Berlin

Beteiligte: BASEMAN, JPI Oceans

BONUS MICROPOLL, EU und BMBF

MiWa, BMBF

ca. 30 Teilnehmer

Inhalte:

- Probenahmetechniken
- Probenaufarbeitung
- Analytik des Mikroplastik mit unterschiedlichen Methoden

Vielen Dank!

GEFÖRDERT VOM

